Python for Finance with Intro to Data Science

Python for Finance with Intro to Data Science

Reviews 4.89 star(s) 28 reviews

Headline
Achieved my goal in this course!
I had previous experience of coding.in Python. I learnt python concept here and there using YouTube. I did enroll in some of other online Python programming courses. But, I felt gap while working on some project at my work place or for my personal quantitative analysis project. I have completed "C++ Programming for Financial Engineering" and "Advanced C++ and Modern Design" both courses via QuantNet. I decided to enroll in "Python for Finance with Intro to Data Science". After looking at syllabus, I was so excited to learn all mentioned topics, mainly OOO, generator, context manager, exception handling, decorator, DATA PREPARATION and DATA PREDICTIONS.

After completing this course with distinction, I realized I should have enrolled in this course way back in months. This course is perfectly organized, video and demonstration by @APalley is thorough. Video length is just perfect. I am still amazed by his demonstration.

I am giving weight to this course than any other online course out there in internet world. Anyone who likes to learn python from end-to-end, at least for your work based on your need, this course is highly recommended.

On top of that, my work is in MBS, so that is added advantage for me to have this course which includes loan pricing, Level 7.

Whole course is exceptionally organized. I am thankful to @APalley for his feedback on my assignments. I am trying to be more pythonic way.

Thank you so much @APalley @Andy Nguyen.
Headline
The fear of coding had left me.
Just a brief about myself. I graduated from Wesleyan University'19 with a major in Math and Econ. I took one basic intro to prog course in college but that really didn't help me that much. Wanting to pursue Masters in Financial Engineering in the future I enrolled for Baruch's C++ for Financial Engineering course.
Not going to lie it was the hardest educational experience for me. I spent at least 4 hours a day coding and trying to figure out how to code.
Eventually, I got through it, but what I took away from the course was that now I was confident enough to take on any coding course.

The fear of coding had left me.

Following that, I signed up for the Python Intro to Data Science Course.
About the course: I feel @APalley and @Andy Nguyen have done a phenomenal job at creating the course.
The course is very hard and you need to definitely grind to complete the homework. I won't be saying what is there in the course as it's already been covered in this thread but it will definitely give you confidence in Python and give you a deep dive into Data Science and what all is out there.

For me, these two courses have put me on track to hopefully create one or two algos for trading!

Thank you for all your help @APalley!
Headline
Good Python course
I finished this course 2 months ago. I use 3 months to finish this course, which is the entire allowable period of the course. It is a hard time. However, I learned a lot of things. The first chapter would help you build a solid foundation of python syntax. Then, in the second chapter, the course would let you study object-oriented programming, which is the hardest chapter for me. However, after I finished the second chapter, I have known almost all the things I need to know about object-oriented programmings, like inheritance and decorator. In the 3, 4, and 5chapter, you would study some advanced syntax, which is not so hard, but it is very useful when building the project in chapter 7. In chapter 6, you would study Monte Carlo simulation, which is useful in manipulating risk and option pricing. In chapter 7, you would build your own object-oriented project, which seems difficult. However, if you study well in the previous chapter, it became easy when you are doing it. Chapter 8,9,10 are about data science. Although these chapters are using the libraries others have created, they are still not easy. You need to understand the structure of data deeply. These three chapters are also very useful. They helped me a lot when a write my honor thesis. Without the knowledge from this three-chapter, I would spent much more time on data manipulation.

In short, I am very thankful for this course. This course helps me build solid skills in python programming and data science. I would recommend this course to people who want to study python definitely.
Headline
Exceeded my original goal!
Quality was outstanding and it exceeded my original goals for taking the course.
Headline
QuantNet always seems to deliver some of the very best online programming courses!
Reviewed by Verified Member
I recently finished this course.

Like the above testimonials mentioned, @APalley and @Andy Nguyen definitely did an excellent job with putting this course together and it covers a lot of useful material that is used a lot in day-to-day work--I think anyone who has worked even a bit in industry would agree with this.

While I didn't take the first half of this course, I can say that from both my past and current jobs, many of the Python concepts taught and practiced from levels 1 to 7, especially object-oriented programming, are used heavily in the financial/commodity industry, but unfortunately not covered in much detail in college/grad school. Oh and that Asset-Backed Security pricing project in level 7 is definitely something that will impress!

For the second half of the course, I will break it down into levels.

Level 8 gave an extensive overview on Pandas data structures, data manipulation and sources for data. This level greatly refreshed my knowledge of the Pandas library. In addition, it gave me a brief overview of some great sources for collecting data--as opposed to using a combination of the requests and BeautifulSoup modules (which works but definitely requires a good understanding of HTML) for data scraping. The one thing that really stood out for me is that this level covered the "melt" function--I've used this function so many times at work to get data (from, e.g., .json, .csv, files) into the right format to upsert into a database, as files often have multi indexing. Knowing this function beforehand would've saved a lot of googling and this course definitely gives you extensive opportunities to practice it to the point that it becomes second nature.

Level 9 covered data viz--an area that I will be focusing a lot on in work from Jan 2021 to Mar 2021. During grad school, I've used matplotlib extensively but I have leaned towards Excel plotting on the job as sometimes it gets hard to make things look nice effortlessly. After taking this course, I'm officially reverting back to Python because Plotly--this course is my first time experiencing with it--has solved many of these issues.

Level 10 material was definitely one of the key reasons I took this course. After taking the course, I'm actually happy that it focused more on data cleaning and bootstrapping, as these are areas not really focused on much (from what I've seen in other machine learning type courses) but equally important to effective machine learning model development. I do hope that a more machine learning focused Python course comes out in the future, as QuantNet always seems to deliver some of the very best online programming courses!

All in all, I really enjoyed the Python course!
Headline
Worth every dollar spent!
Let me start by stating the fact that I have actually gone from ZERO to hero. This course is intense, at least for me it was. I took a college course in Python few months before I started this course; however, everything I studied in that college course, Quantnet's course covers it in level 1. Yes level one is long, and intense, and no it doesn't get easier onward, it actually gets tougher by the day, but some of the chapter are not as long as level 1. After level 7, the course switches to more data science concentration.

All in all, I have learned tons, I learned how to think strategically and design my code in my own way (it takes a lot of time and the struggle is real!) but, once you go through that, things become easier, you start coding faster and faster; I don't know about you, but to me, that feels amazing. I am pretty happy with my results on this course; and to say the least the TA @APalley is truly AMAZING. He is polite, smart, patient; no matter how many questions we ask him about a particular question, he would always find a way to explain it to you in a way that you would understand. I wanted to thank @Andy Nguyen for putting this course together, this has been a pleasant and fruitful journey to say the least.

By the way, I am not a CS major, nor I am an expert in Python; so if you are in the same boat; I would suggest getting ready for putting serious hours. The HW assignments will take time, and once you start working on the assignment it will be an obsession, time will fly without you even feeling (it's kind of fun I am not going to lie).

Now that I have gone through this very steep learning curve; I am looking forward for the next endeavor!
Headline
Super Python course. Truly great course.
It has been an absolute pleasure struggling through this course.

I am a beginner in terms of programming and after finishing this course, I feel very confidence in terms of my programming ability: I can read through a complex problem and design a solution, write maintainable codes, run Monte Carlo simulation on practical financial problems, slicing and dicing massive datasets and build data visualization tools like a pro.

The coursework is rigorous. There is a lot of exercises that students have to go through each level. I initially planned to dedicate 1 hour a day on the course and I must have spent at least 3-4 every single day to work through the course load. Writing codes is one thing but debugging and optimizing them are others time-consuming issues that I have learned a lot going through this experience. Get ready to work!

The course material is very hands on. It walks students through steps by steps building functions each level from very simple to complex, culminating in a very extensive and complex case study in level 7 of modeling a simplified Asset Backed Security. Even though the steps are well though out and implemented in the exercises, they left room to challenge students to think about ways to design, implement and optimize their approach. This is also part of the rigor of this course. The exercises are not easy! A lot of ""Python for Finance"" courses out there just feed you codes to run. This will not be one of them.

Many sophisticated topics were cover: decorator, multi-processing, data science packages etc. Best practices are also drilled in the lecture and carried out through the exercises. The video lectures are designed in bite-size and to-the-point, long enough to cover the topic but not too long that students are left drooling.

TA (APalley in my case) was excellent in terms of guiding me through this course. His hints given during the homework assignments left enough room for critical thinking on the student part while not giving the answer away. This is important as it helps you learn how to approach and breakdown a complex problems and identify possible pitfalls later on. The homeworks' comments are very extensive. I would recommend students going through problematic areas to re-optimize their codes as the technical debt only builds as you progress further through the course.

In the end, I experienced tremendous growth going through this course and would definitely recommend it for anyone with an interest in Python and Data Science. Non-STEM majors (as I am) might have a steeper learning curve compare to a Comp Sci major but you likely get a lot more return on investment out of this course.
Headline
An excellent and memorable course.
Good course that helps me improve my python skill. And for second part, data science, is relatively complicate compared with the first part for those who unfamiliar with pandas. This is a forum based q&A course,I believe it will get better and better as more and more people take this course.
Back
Top Bottom